Archive
We’re Not Local
Ars Technica has a nice article on a piece of theoretical work done by J D Bancal, et al. The upshot of it is that if your explanation for how quantum mechanics works is anything other than non-local, leaves open the possibility of faster-than-light communication. (Thanks to Dan Miller for pointing me at it.)
I have mixed feelings about this idea, as I’d love for faster-than-light communication to be a possibility, and am delighted that someone has come up with a way of determining whether it can be done. However, the flip side of this is that I’m pretty certain that QM is fundamentally non-local, as I outlined in my post on replicating particle self-interference. The notion here being that non-locality doesn’t rule out discrete models. If anything, it supports them, as it encourages to think of wave-functions as sets of non-locally distributed points, either finite or otherwise.
What this result doesn’t say, unless I’m missing something, is that the currently fashionable, complex-number-based model of QM is literally true. You can still take exactly the same result and reframe it in terms of another equivalent model, such as Bohmian mechanics, for instance, and get something that looks completely deterministic.
Hence, while the result is nifty, the goal posts for viable theories of physics remain doggedly where they were.